

Staffa Fixed Displacement Hydraulic Motor

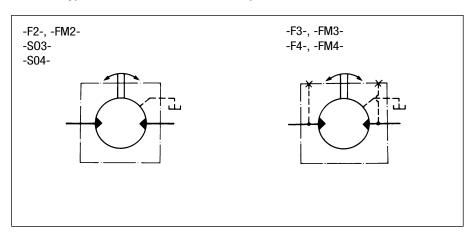
CONTENTS

1.	General Description	2
2.	Functional Symbols	2
3.	Model Code	3
4.	Performance Data:	
	Motor data	
	Rating definitions	
	Output torques	
	Bearing life Volumetric efficiency	
5	Circuit and Application Notes:	
5.	Starting torques	
	Low speed operation	
	High back pressure	
	Boost pressure	
	Cooling flow	
	Motor casing pressure	
6.		
7.	Temperature Limits	8
8.	Filtration	8
9.	Noise Levels	8
10.	Polar Moment of Inertia	8
11.	Mass	8
12.	Installation Data:	
	General	
	Crankcase drain	
	Start-up	
13.	Installation Dimensions	9 to 13

1. GENERAL DESCRIPTION

Page

The HM(HD)B150 fixed displacement motor is one of 12 frame sizes in the Kawasaki "Staffa" range of high torque, low speed radial piston motors which extends from 94 to 6800 cm³/r (5.76 to 415 in³/r) capacity. The rugged, wellproven design incorporates hydrostatic balancing techniques to achieve high efficiency, combined with good breakout torque and smooth running capability.


This motor is available with standard or with heavy duty shaft bearings, model types HMB150 and HMHDB150 respectively. Various features and options are available including, on request, mountings to match competitor interfaces.

The HMHDB150 is capable of torque outputs up to 10 800 Nm (7950 lbf ft) and speeds to 220 r/min with a continuous output of up to 115 kW (154 hp).

The Kawasaki "Staffa" range also includes dual and continuously variable displacement motors, plus matching brakes and gearboxes to extend the available torque range.

2. FUNCTIONAL SYMBOLS

All model types with variants in model code position 4

3. MODEL CODE

Features shown in brackets () may be left blank according to requirements. All other features must be specified.

(F**)-HM(**)B150-(H)**(V)-***-(**)-3*-(PL**) 1 2 3 4 5 6 7

1 FLUID TYPE

- Blank = Petroleum oil
- F3 = Phosphate ester (HFD fluid)
- F11 = Water-based fluids (HFA, HFB & HFC)

2 MODEL TYPE

- Blank = Standard ("HMB")
- M = To NCB (UK) specification 463/1981 ("HMMB")
- HD = Heavy duty ("HMHDB")
- R = Dual mount, front or rear ("HMRB")

3 SHAFT TYPE

Use "H" prefix code as noted to specify "hollow" shafts with through hole Ø 26,2 (1.03 dia). *Hollow shafts are available only with type "SO4" main port connection.*

Code Description

Cylindrical, keyed shafts

(H)P1*▲ Ø 85mm (3.35 in dia)

(H)P2* Ø 100mm (3.94 in dia); HMHDB150 only

Cylindrical, splined shafts

(H)S3*	20 splines to BS 3550
(H)S4* ▲	16 splines, 20° involute form
(H)S5*	23 splines to BS 3550; HMHDB150 only
(H)Z3*	Splines to DIN 5480 (W85 x 3 x 27 x 7h)
(H)Z5*	Splines to DIN 5480 (W100 x 4 x 24 x 7h); HMHDB150 only
(H)Q*	Female, 34 internal splines to BS 3550; HMHDB150 only

Tapered shafts

T*▲ Long taper, keyed shaft (H)X* Short taper, keyed shaft; HMHDB150 only

* For installations where shaft is vertically upwards specify "V" after shaft type letter to ensure that additional high level drain port is provided.

▲ Not normally recommended for use in heavy duty applications.

4 MAIN PORT CONNECTIONS

Models with 21/4" distributor valve

- F2◆ = SAE 1", 4-bolt (UNC) flanges FM2◆ = SAE 1", 4-bolt (metric) flanges
- Models with 3" distributor valve
- $F3 \Rightarrow SAE 1^{1}/4^{"}$, 4-bolt (UNC)
- flanges FM3 \blacklozenge = SAE 1¹/4", 4-bolt (metric) flanges
- SO3 = 6-bolt (UNF) flange (Staffa original valve housing)

- F4 = SAE $1^{1}/2^{"}$, 4-bolt (UNC)
 - flanges
- $FM4 = SAE 1^{1/2"}$, 4-bolt (metric) flanges
- SO4 = 6-bolt (UNF) flange (Staffa original valve housing)
- These port options allow reduced installation dimensions but have flow limitations; see "Performance Data" (page 4) for recommended maximum speeds.
- Obligatory for hollow shaft motors

5 TACHO/ENCODER DRIVE

Т

- = Staffa original tacho drive
- T1 = Suitable for Hohner 3000 series encoders. (Encoder to be ordered separately).
 Omit if not required and when specifying shaft types "H".

6 DESIGN NUMBER, 3* SERIES

Subject to change. Installation and performance details remain unaltered for design numbers 30 to 39 inclusive.

7 SPECIAL FEATURES

PL** = non-catalogued features, e.g.: Stainless steel shaft sleeves Alternative encoder and tacho drives Alternative port connections Shaft variants Alternative capacities Special mountings Special paint

** Number assigned as required to specific customer build.

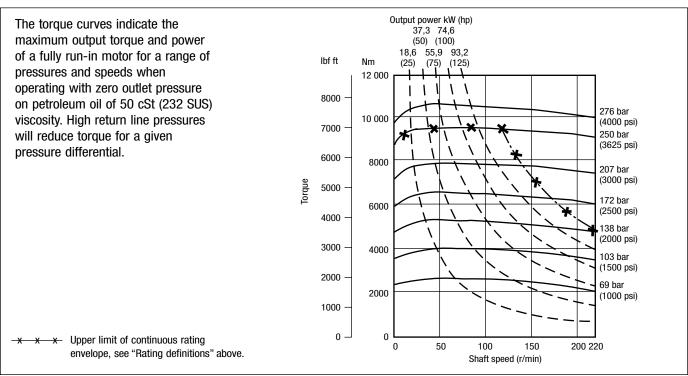
4. PERFORMANCE DATA

Performance data is valid for Staffa HMB150 and HMHDB150 motors fully run in and operating with petroleum oil. See separate table for pressure and speed limits when using fire-resistant fluids. Leakage values are at fluid viscosity of 50 cSt (232 SUS).

MOTOR DATA

		Port connecti F4, FM4, SO4	on type, mod F3, FM3, SO3	el code 4 F2, FM2
Geometric displacement▲	cm ³ /r (in ³ /r)	2470 (151)	2470 (151)	2470 (151)
Average actual running torque	Nm/bar (lbf ft/psi)	36,95 (1.878)	36,95 (1.878)	36,95 (1.878)
Max. continuous♦ speed	r/min	220	168▼	80▼
Max. continuous output	kW (hp)	115 (154)	115 (154)	75 (100)
Max. continuous pressure	bar (psi)	250 (3625)	250 (3625)	250 (3625)
Max. intermittent pressure	e bar (psi)	293 (4250)	293 (4250)	293 (4250)

▲ Other displacements are made available to special order


▼ Recommended limits to avoid excessive pressure losses

◆ See "Rating Definitions", this page

LIMITS FOR FIRE RESISTANT FLUIDS

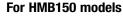
Fluid type Pressure, bar (psi) Continuous Intermittent		Max. speed r/min
103 (1500)	138 (2000)	50% of limits for petroleum oil
138 (2000)	172 (2500)	As for petroleum oil
103 (1500)	138 (2000)	50% of limits for petroleum oil
250 (3625)	293 (4250)	As for petroleum oil
	Continuous 103 (1500) 138 (2000) 103 (1500)	ContinuousIntermittent103 (1500)138 (2000)138 (2000)172 (2500)103 (1500)138 (2000)

OUTPUT TORQUES

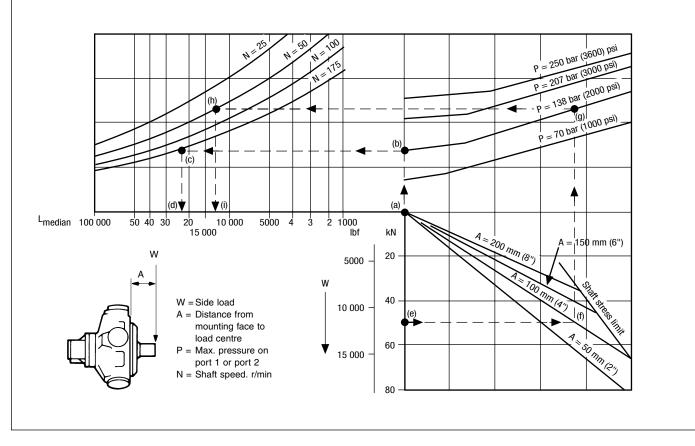
RATING DEFINITIONS

CONTINUOUS RATING

For continuous duty the motor must be operating within each of the maximum values for speed, pressure and power.


• INTERMITTENT RATING

Operation within the intermittent power rating (up to the maximum continuous speed) is permitted on a 15% duty basis, for periods up to 5 minutes maximum.


● INTERMITTENT MAX. PRESSURE

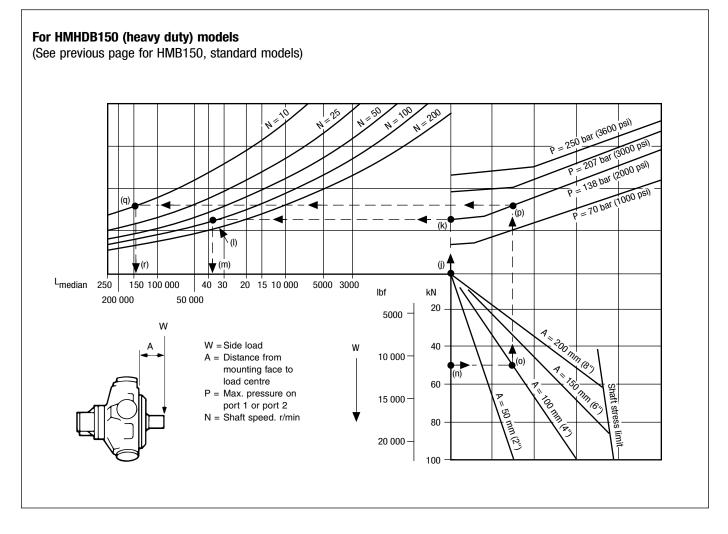
Up to 293 bar (4250 psi) is allowable on the following basis:

- (a) Up to 50 r/min: 15% duty for periods up to 5 minutes maximum.
- (b) Over 50 r/min: 2% duty for periods up to 30 seconds maximum.

(See next page for HMHDB150, heavy duty models)

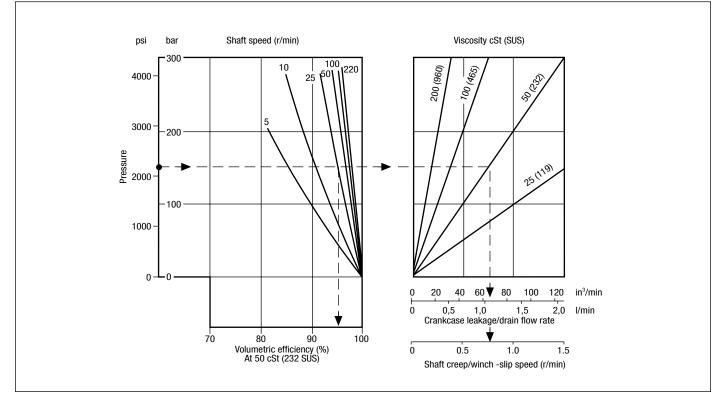
The nomographs on this and the following page allow the median▲ bearing life to be determined for conditions of:

- 1. No side load and no axial thrust
- 2. Side load and no axial thrust
- ▲ To determine L10 life predictions per ISO 281-1-1977 multiply the median figure by 0.2.


	HMB150
Example 1 (follow chain dotted line):	
Side load (W)	a) 0
System pressure (P)	b) 138 bar (2000 psi)
Speed (N)	c) 175 r/min
Median bearing life	d) 23 000 hrs
L10 bearing rating = median x 0.2	4600 hrs
Example 2 (follow chain dotted line):	
Side load (W)	e) 50 kN (11 236 lbf)
Load offset (A) from motor mounting face	f) 100 mm (4.0 in)
System pressure (P)	g) 138 bar (2000 psi)
Speed (N)	h) 50 r/min
Median bearing life	i) 12 000 hrs
L10 bearing rating = median $\times 0.2$	2400 hrs

For more precise life prediction, or where axial thrusts are incurred, a computer analysis can be provided by Kawasaki on receipt of machine duty cycle.

The shaft stress limit in the nomograph for HMB150 motors is based on the fatigue rating of shaft types "S3", "T" and "P1".


Infrequent loading above these limits may be permitted; consult Kawasaki.

SHAFT STRESS LIMIT, HMB150 motors

	HMHDB150
Example 1 (follow chain dotted line):	
Side load (W)	j) O
System pressure (P)	k) 138 bar (2000 psi)
Speed (N)	l) 100 r/min
Median bearing life	m) 36 000 hrs
L10 bearing rating = median $x 0.2$	7200 hrs
Example 2 (follow chain dotted line):	
Side load (W)	n) 50 kN (11 236 lbf)
Load offset (A) from motor mounting face	o) 100 mm (4.0 in)
System pressure (P)	p) 138 bar (2000 psi)
Speed (N)	q) 10 r/min
Median bearing life	r) 150 000 hrs
L10 bearing rating = median x 0.2	30 000 hrs

• SHAFT STRESS LIMIT, HM(HD)B150 motors The shaft stress limit in the nomograph for HMHDB150 motors is based on the fatigue rating of Ø 100 mm (3.94" dia) shaft types "P2", "S5" and "Z5". Infrequent loading above these limits may be permitted; consult Kawasaki.

This nomograph enables the average volumetric efficiency, crankcase (drain) leakage and "winch slip"/shaft creep speed to be estimated.

Example (follow chain dotted line): Given:

1. Pressure	· · · ·
2. Speed	
3. Viscosity	50 cSt (232 SUS)
To obtain:	
4. Volumetric efficien	cy 95.3%
5. Crankcase leakage	e 1,04 l/min
	(64 in ³ /min)
6. Shaft creep speed	0.75 r/min

The shaft creep speed occurs when the load attempts to rotate the motor against closed ports as may occur, for example, in winch applications.

5. CIRCUIT AND APPLICATION NOTES

STARTING TORQUES

The starting torques shown on the graph on page 4 are average and will vary with system parameters.

LOW SPEED OPERATION

Minimum operating speeds are determined by load conditions (load inertia, drive elasticity, etc.). For

operation at speeds below 3 r/min consult Kawasaki.

HIGH BACK PRESSURE

When both inlet and outlet ports are pressurized continuously, the lower pressure in one port must not exceed 70 bar (1000 psi). Consult Kawasaki on applications beyond this limit. Note that high back pressures reduce the effective torque output of the motor.

BOOST PRESSURE

When operating as a motor the outlet pressure should equal or exceed the crankcase pressure. If pumping occurs (i.e. overrunning loads) then a positive pressure, "P", is required at the motor inlet ports. Calculate "P" according to port connection type being used, from:

P (bar) = 1 +
$$\frac{N^2}{D_{bar}}$$
 + C bar

P (psi) =
$$14.5 + \frac{N^2}{D_{psi}} + C psi$$

Where:

Ν	= speed, r/min
D	= see table
~	

C = crankcase pressure

Port connection type	D value
F2, FM2	$D_{bar} = 440$ $D_{psi} = 30$
F3, FM3, S03 D _{psi} = 241	D _{bar} = 3500
F4, FM4 S04	D _{bar} = 15 000 D _{psi} = 1034

The flow rate of oil needed for the make-up system can be estimated from the crankcase leakage figure (see Volumetric Efficiency graph above). Allowance should be made for other system losses and also for "fair wear and tear" during the life of the motor, pump and other system components.

COOLING FLOW

Operation within the continuous ratings does not require any additional cooling.

For operating conditions above "continuous", up to the "intermittent" ratings, additional cooling oil may be required. This can be introduced through the spare crankcase drain hole, or in special cases through the valve spool end cap. Consult Kawasaki about such applications.

MOTOR CASING PRESSURE

With the standard shaft seal fitted, the motor casing pressure should not exceed 3,5 bar (50 psi). On installations with long drain lines a relief valve is recommended to prevent over-pressurizing the seal.

Notes:

- 1. The casing pressure at all times must not exceed either the motor inlet or outlet pressure.
- 2. High pressure shaft seals are available to special order for casing pressures of: Continuous: 10 bar (150 psi) Intermittent: 15 bar (225 psi)
- 3. Check installation dimensions (page 9) for maximum crankcase drain fitting depth.

6. HYDRAULIC FLUIDS

Dependent on motor (see Model Code position 1) suitable fluids include:

- Antiwear hydraulic oils
- Phosphate esters (HFD fluids)
- Water glycols (HFC fluids) 🔺
- 60/40% water-in-oil emulsions (HFB fluids) ▲
- 5/95% oil-in-water emulsions (HFA fluids) ▲

▲ Reduced pressure and speed limits, see page 4.

Viscosity limits when using any fluid except oil-in-water (5/95%) emulsions are:

Max. off load	2000 cSt (9270 SUS)
Max. on load	150 cSt (695 SUS)
Optimum	50 cSt (232 SUS)
Minimum	

PETROLEUM OIL RECOMMENDATIONS

The fluid should be a good hydraulic grade, non-detergent petroleum oil. It should contain anti-oxidant, anti-foam and demulsifying additives. It must contain antiwear or EP additives. Automatic transmission fluids and motor oils are not recommended.

7. TEMPERATURE LIMITS

Ambient min	30°C (-22°F)
Ambient max	+70°C (158°F)

Max. operating temperature range

	Petroleum oil	Water- containing
Min.	-20°C (-4°F)	+10°C (50°F)
Max.*	+80°C (175°F)	+54°C (130°F)

* To obtain optimum service life from both fluid and hydraulic system components 65°C (150°F) normally is the maximum temperature except for water-containing fluids.

8. FILTRATION

Full flow filtration (open circuit), or full boost flow filtration (closed circuit) to ensure system cleanliness of ISO 4406/1986 code 18/14 or cleaner.

9. NOISE LEVELS

The airborne noise level is less than 66.7 dB(A) DIN (70 dB(A) NFPA) throughout the "continuous" operating envelope.

Where noise is a critical factor, installation resonances can be reduced by isolating the motor by elastomeric means from the structure and the return line installation. Potential return line resonances originating from liquid borne noise can be further attenuated by providing a return line back pressure of 2 to 5 bar (30 to 70 psi).

10. POLAR MOMENT OF INERTIA

Typical data: 0,25 kg m² (850 lb in²)

11. MASS

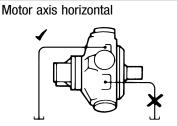
Approx., all models: 265 kg (584 lb)

12. INSTALLATION DATA

GENERAL

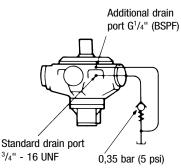
Location diameter

The motor should be located by the mounting location diameter on a flat, robust surface using correctly sized bolts. The diametral clearance between the location diameter and the mounting must not exceed 0,15 mm (0.006 in). If the application incurs shock loading, frequent reversing or high speed running, then high tensile bolts should be used, including one fitted bolt.

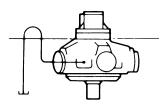

Bolt torque

The recommended torque wrench settings for the mounting bolts are: M20 bolts......407 \pm 14Nm (300 \pm 10 lbf ft) ³/4" bolts...... 393 \pm 14Nm (290 \pm 10 lbf ft)

Shaft coupling


Where the motor is solidly coupled to a shaft having independent bearings the shafts must be aligned to within 0,13 mm (0.005 in) TIR.

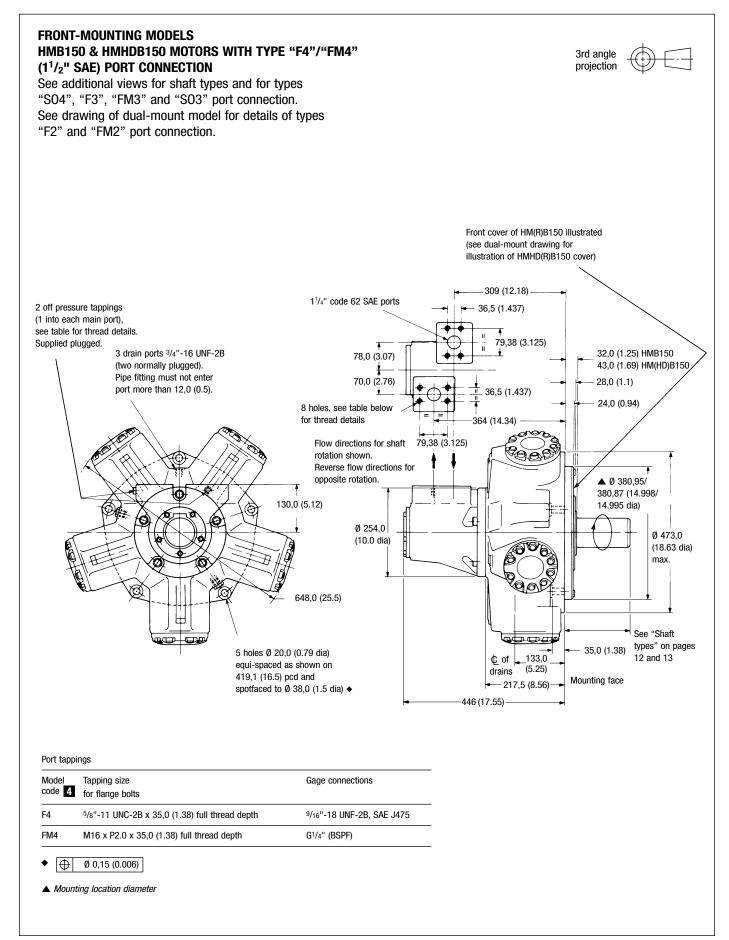
CRANKCASE DRAIN

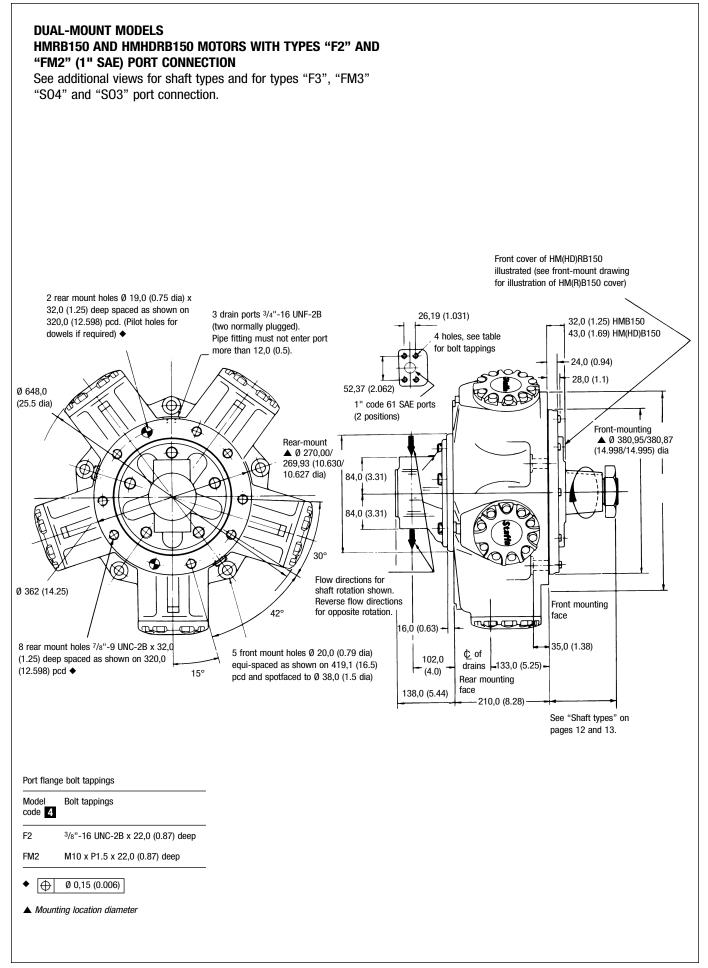

The crankcase drain must be taken from a position above the horizontal centre line of the motor.

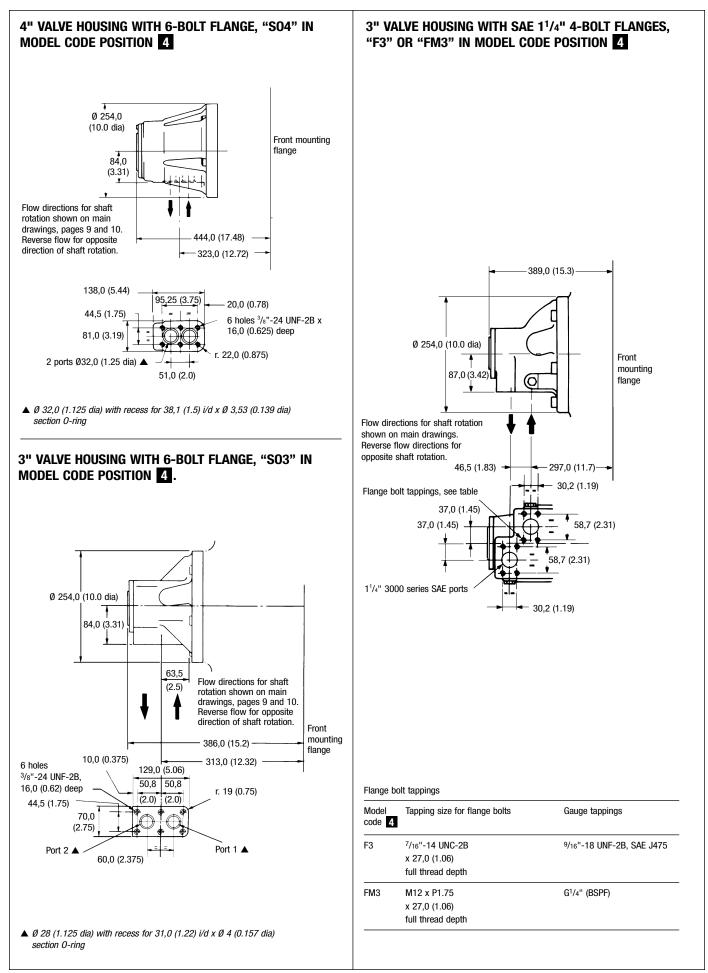
Axis vertical, shaft up

An additional G¹/4" (BSPF) drain port is provided when the "V" (shaft vertically upwards) designator is given after the shaft type letter in position **3** of the model code. This additional drain should be connected into the main motor casing drain line downstream of a 0,35 bar (5 psi) check valve to ensure lubrication of the upper bearing, see above diagram.

Axis vertical, shaft down

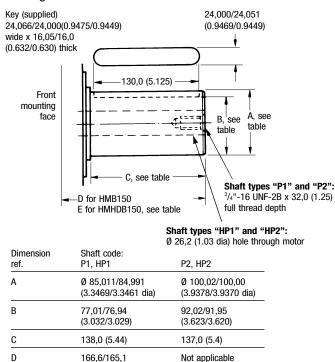



Use any drain position. The drain line should be run above the level of the uppermost bearing; if there is risk of syphoning then a syphon breaker should be fitted.


START-UP

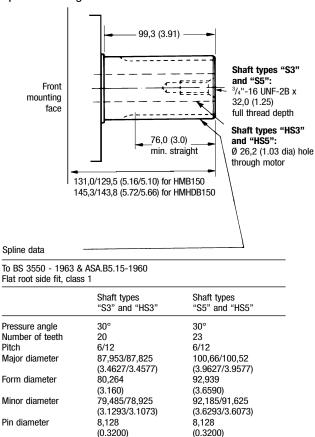
Fill the crankcase with system fluid. Where practical, a short period (30 minutes) of "running in" should be carried out.

13. INSTALLATION DIMENSIONS IN MM (INCHES)



SHAFT TYPES "P1" AND "HP1", MODEL CODE POSITION 3

Ø 85,0 (3.35 dia) cylindrical shaft with key, with optional through hole


SHAFT TYPES "P2" AND "HP2", MODEL CODE POSITION

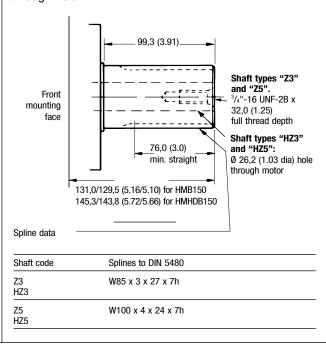
Ø 100,0 (3.94 dia) cylindrical shaft with key, with optional through hole

SHAFT TYPES "S3", "HS3", "S5" AND "HS5" IN MODEL CODE POSITION 3

Cylindrical shafts with splines to BS 3550-1963, with optional through hole

SHAFT TYPES "Z3", "HZ3", "Z5" AND "HZ5" IN MODEL CODE POSITION 3

97,084/97,030


(3.8222/3.8201)

Diameter over pins

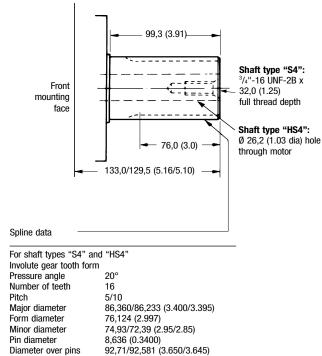
Cylindrical shafts with splines to DIN 5480, with optional through hole

109,58/109,51

(4.3140/4.3117)

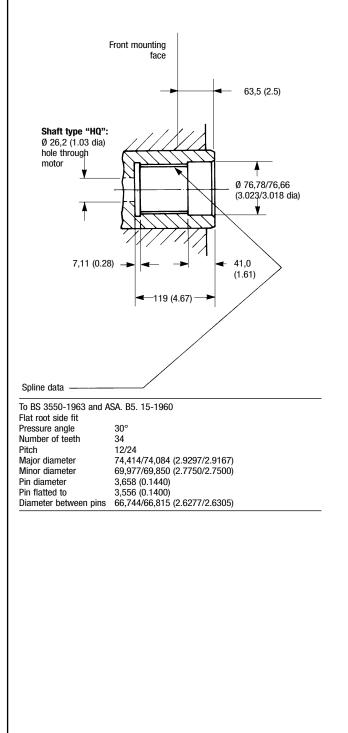
SHAFT TYPES "S4" & "HS4", MODEL CODE POSITION 3 Cylindrical shaft with 16 involute form splines

184.3/181.3

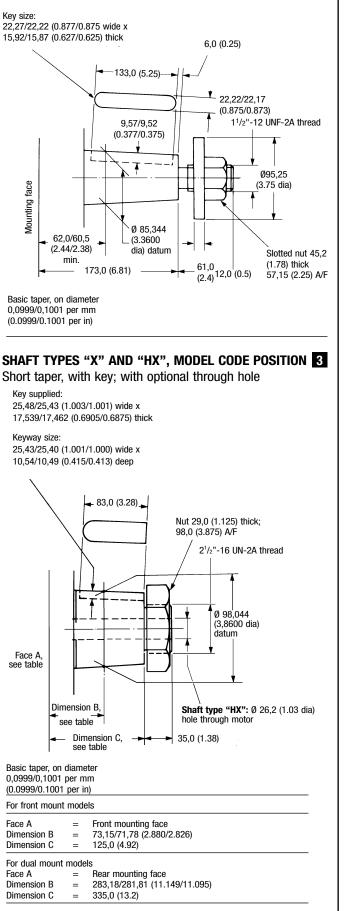

(7.26/7.14)

(6.56/6.50)

178.6/177.0


(7.03/6.97)

Ε


SHAFT TYPES "Q" AND "HQ", MODEL CODE POSITION 3 Female shaft with 34 splines to BS 3550, with optional through hole.

Note: The "Q" and "HQ" shafts will transmit the maximum torque given on page 4. However, customers should ensure that their own mating shaft will transmit the torque required in their application.

SHAFT TYPE "T", MODEL CODE POSITION 3 Long taper, with key

NOTES

NOTES

Presented by:

Kawasaki Motors Corp., U.S.A. Precision Machinery Division

5080 36th Street S.E., Grand Rapids, MI 49512 • USA (616) 949-6500 • Fax (616) 975-3103

www.kawasakipmd.com

Staffa hydraulic motors are manufactured to the highest quality standards in a Kawasaki ISO 9001 certified facility. Certification No. 891150